Classifying Possible Density Degree Sets of Hyperelliptic Curves
Jasmine Camero (Emory)
Abstract: Let $C$ be a smooth, projective, geometrically integral hyperelliptic curve of genus $g \geq 2$ over a number field $k$. To study the distribution of degree $d$ points on $C$, we introduce the notion of $\mathbb{P}^1$- and AV-parameterized points, which arise from natural geometric constructions. These provide a framework for classifying density degree sets, an important invariant of a curve that records the degrees $d$ for which the set of degree $d$ points on $C$ is Zariski dense. Zariski density has two geometric sources: If $C$ is a degree $d$ cover of $\mathbb{P}^1$ or an elliptic curve $E$ of positive rank, then pulling back rational points on $\mathbb{P}^1$ or $E$ give an infinite family of degree $d$ points on $C$. Building on this perspective, we give a classification of the possible density degree sets of hyperelliptic curves.
number theory
Audience: researchers in the topic
Series comments: Most talks are preceded by a pre-talk for graduate students and postdocs. The pre-talks start 40 minutes prior to the posted time (usually at 1:20pm Pacific) and last about 30 minutes.
| Organizers: | Kiran Kedlaya*, Alina Bucur, Aaron Pollack, Cristian Popescu, Claus Sorensen |
| *contact for this listing |
